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Introduction:

Kropff & Treves [1] describe a method of producing grid cells. It appears to be
supported by biology [2]. The gist of it is to make a spatial pooler [8] with two
new mechanisms: stability and fatigue. The spatial pooler’s overlap is stabilized
by putting it through a low pass filter, which smooths over input fluctuations
and removes spurious input fluctuations. Each cell also has a fatigue which
slowly follows its activity, catches up to it and turns it off. The fatigue is equal
to the overlap passed through a low pass filter.

o The effect of the stability mechanism is to cause the cells (or SP mini-
columns) to learn large, contiguous areas of the input. As the sensory
organ moves around the world, the stability mechanism causes the cells to
represent large & contiguous areas of the world by forcing cells to react
slower than their sensory input is changing.

o The fatigue mechanism shapes the contiguous areas of the grid cell receptive
fields into spheres which are then packed into the environment. As the
sensory organ passes through areas of the world, grid cells get tired and
fall behind in the competition for a short while.

Methods:

Grid cells are implemented as an extension to Nupic [4] as a subclass of the
SpatialPooler (SP) class. The SP is modified in three ways:

1) Stability and fatigue dynamics are applied to the overlap.

2) The overlap is divided by the number of connected synapses to each grid
cell.

3) Synapses only learn when either the presynaptic or postsynaptic side
changes its activity state. This filters out duplicate updates on sequential
time steps. This is causes the grid cells to only learn when the agent is
moving around, a stationary agents grid cells will not learn.

Usage: $ ./grid_cell _demo.py [--train_time number_of_steps]

Results:
Compare these results to Kropff & Treves, 2008, Figure 1.



The model is trained in a 200x200 arena by randomly walking. The simulated
agent moves at a constant speed of 1.4 units per step. When it reaches one of
the arenas boundaries it is turned to face back into the arena. The model is
trained for 1 million steps, which took 64 minutes.
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Figure 1: Example of random walk. This figure contains only 10,000 steps, as
at 1,000,000 steps the path fills the image to solid black.

Each location in the arena is represented by 75 place cells. There are 2,500 place
cells in total, for a sparsity of 3%. Nupic’s coordinate encoder models these
input cells.



Figure 2: Example place cell receptive fields. Each plot is for a randomly
selected place cell. The place cell activates when the agent moves into the yellow
areas of the arena.

The model is tested by examining which locations each grid cell activates at (AKA
its receptive field). The model is reset before measuring each location which
removes the effects of movement, stability, and fatigue. Learning is disabled
while testing. Figure 3 shows the results of this test performed on an untrained
model. Figure 4 shows the results of this test performed on a trained model.
Figure 5 shows the autocorrelations of figure 4, which should reveil any periodic
components in their receptive fields.




Figure 3: Untrained grid cell receptive fields. Each box is a randomly selected
grid cell. Notice that some of these figures are zoomed in. Notice that the grid
cells do not respond to large contiguous areas of the arena. There are many
isolated (non-contiguous) activations. The small contiguous area are randomly
shaped and have fuzzy, ill-defined borders.

Figure 4: Trained grid cell receptive fields, randomly sampled. Notice that the
grid cells respond to large contiguous areas. Many of the receptive fields are
approximately round, the same size, and have sharp, well defined borders.

Figure 5: Autocorrelations for the grid cells shown in figure 4. Several of these
figures show a clear hexagonal pattern. Others show stripes, a pattern which



(Kropff and Treves, 2008) predicts as a theoretical sub-optimal solution. Ideally,
the surrounding periodic maxima would be as strong as the central maxima but
this has not happened.

Future work:

Increasing the training time and doing parameter optimization would be the next
steps for this model. There is a standard metric for a cells ’gridness’ [1][3] which
makes possible methods of automated parameter searching such as swarming
and evolutionary searches. It consists of the autocorrelation of the grid cells
receptive field and some image processing to look for the grid pattern.

Hypothetical recurrent connections between grid cells could help align [5][6] and
tessellate the grid. Collateral connections from many sources of input could aide
in grid cell function, such as head direction cells and actions.

Before I do any of that though, I have a different experiment which I intend
to perform. I will attempt to use the stability mechanism to induce view-point
invariance in the L2/3 spatial pooler [7].
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