Introducing a New Method for Simulating Kinetic Models

- Faster \& More Accurate than NEURON's sparse solver
- For models which are Linear \& Time-Invariant
- Markov Models of Ion Channels
- Proof of concept implemented for NMODL files

Presented by David McDougall, 2022

What is a Linear \& Time-Invariant Differential Equation?

Problem: $d x / d t=A * x$

- Where X is a variable
- Where A is a constant

Solution: $\quad x_{t+d t}=x_{t} * \exp (A * d t)$

- But what if X is a vector and A is a matrix?

The exponential function is defined for matrices
" A " is a function of the input

- Assume the input is constant for the duration of each time step

Example:

 Kinetic Model of Nav1.1 with 6 states

These plots shows the
 fraction of each state that transitions to each other state, as a function of voltage, over the course of one time step.

How to approximate the matrix?

- Divide the input space into small pieces
- Fit a polynomial approximation to each piece

Accurate

- The matrix exponential is an exact solution
- Its approxiation is the only source of error
- Automatically measure and control the error by:
- Increasing the number of input bins
- Increasing the order of the polynomials
For this figure, the maximum approximation error was $10^{\wedge}-6$

Fast

Loading the approximation from RAM is slow Use CPU cache and process large batch

- Approx must fit in cache
- This figure measured 10,000 instances

Speed vs Accuracy

Simulation Speed vs Accuracy

Pros \& Cons

Pros

- Fast
- Accurate

Cons

- Only 1 or maybe 2 inputs allowed
- Variables become constant
- Temperature
- Time Step
- Parameters
- ASSIGNED block
- Complicated to implement
- Slow startup
- Reference:

Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Rotter S, Diesmann M (1999). https://doi.org/10.1007/s004220050570

- Source code:
https://github.com/ctrl-z-9000-times/Iti_sim
MIT License

